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Now considering the case when al =az = 1, and a3 = f) ‘2]

and denoting the total transverse electric field, at the [3]
junction, for this case by ~P(p, O) we can obtain the

variational relation (2. 15a) with the aid of (2.13a) and
[4]

(2.13b). In (2.15a) we recognize that the first term in the 15]

second infinite sum precisely corresponds to {b~/(al +

bl)z} with tz~=0. [6]
Considering the case when a, =(1 – S33)/S13, az = O,

and as = 1 and denoting the total transverse electric field, [7]

at the junction, for this case by EP(p, O) we can obtain the [8]
second variational relation (2. 15b).
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Eigenvalue Spectrum of Rectangular
Waveguide with Two Symmetrically

Placed Double Ridges

D. DASGUPTA -P. K. SAHA

Abstract-The eigenvalue spectrum of mdaogufar wavegnfde with two

symruMdY pfad double ridges bas been determined by formufathrg an
integral eigenvafue problem and solving by Ritz-Galerkfn method. The

bandwidth characteristic is found to be adequate for varactor-tmwd sofid-
state microwave oaciflator applications requiring ridge structure for reaor2a-
tor. There remafna some ambiguity in the designation of trough morfea.

I. INTRODUCTION

R IDGED WAVEGUIDES have many applications in

microwave circuits because of their intrinsic broad

bandwidth [ 1]– [3]. A rectangular waveguide with two
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symmetrically placed double ridges was proposed and

used by Jull et al. [4] for microwave heating. The design

data were presented in the form of normalized cutoff

wavelength of the dominant TE mode for various ridge

parameters. These were calculated by the five point finite

difference method and extrapolated to the zero mesh

limit. For the experimental verification measurements were

also carried out on WR 340 waveguide with double ridges.

Among the other possible applications of such wave-

guides one appears to be in oscillators. Wide-band opera-

tion of Gunn oscillators using the conventional ridged

waveguide has been demonstrated [5], [6]. The waveguide

with two symmetrical double ridges may well be useful for

the broad-band vim-actor-tuned Gunn oscillator with two
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Fig. 1. Rectangular waveguide with two symmetrically placed double
ridges-transverse plane.

diodes gap mounted in parallel. The calculations show A. Region I (O < x < al)

that for the ridge parameters appropriate for such an m

application, this waveguide has a bandwidth of at least an
m9r

gl(b-)= 2 ‘hstiKxb’xcos— ~ (Y–a4) (6)

octave. Whatever, the application, one needs to know the m=O COs

complete eigenvalue spectrum of the waveguide. This has where the upper and lower functions correspond, respec-

been evaluated following Montgomery’s [7] work on ridged tively, to the magnetic and electric symmetry and

waveguide. An integral eigenvalue problem is formulated

and solved numerically by Ritz-Galerkin method. The ()
K:lm+ ~ 2= K;.

results of computation on the dominant as well as a few

higher order modes are presented. B. Region II (al <x< al +s)

II. FORMULATION OF THE PROBLEM
w

The geometry of the ridged waveguide is shown in Fig.
gz(%) = ~ q2.(xf sin KX2.X

n=O

1 along-with th; dimensional notati&s. The only plane ;f +Bcos KX2nx)cos~(y–a3)
symmetry asy,uned is the Y–Z plane. The problem can

then be divided into four cases of TE and TM modes with

the elect~c or magnetic wall at the plane of symmetry. ()
.K:2~ + ~ 2 =K;.

The TE mode analysis is given in detail while for the TM

mode the final matrix equations are given without deriva- C. Region III (aI +s < x < aJ
tion. m

Using I the notations of Montgome~ [7] for conven- gq(r~) = ~ %COS K.3/(x–a2)cos~(y –a4)
ience, the introductory equations for deriving the TE basis” 1=0

(7)

fields from the Hertzian vector w~ are written briefly as

follows:
()

lm 2
K;3, + ~ =K;. (8)

‘h ‘drT)+(z)iz (1) From the condition gl =g2 at the aperture at x=al we

where obtain

(V~+K#)g(rT)=O

(a’/i3z2+y’)@(z)=o (2) m==O Cos u

if KO =$>KT

if KO<KT. (3)

= i qz.(~sin K.2.al +BcosKx2na,)cos~(y-a,).
n=O

(9)
{=–j K$–K~ ,

The TE basis fields are given by Let EJ y ) be the unknown aperture field at x= al. Then

from the continuity of ey(rT) at x= al we obtain the
e~(r=) = vg(r~) X iZ [ (4) following equations:

‘T(%) ‘(~/j”pO)fz ‘%(rT)-

[ 1(s)–%m%m :;n%’al %#=

Using the TE boundary conditions we can write the

following expressions for g(rT) in the gap and trough .J”3~gfY’)cosy(Y’-a4)@’ (10)
regions. —a;
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and

–T2.KX2.(A cos Kx2.al –Bsin Kxz~al)cnd

=Ju3EgJY’)cos~(Y’-a,)@’ (11)
—05

where

Cn=l, forn=O

= 1/2, for n#O.

Proceeding similarly with the boundary conditions at x=

al +s and denoting the unknown transverse electric field

at the aperture by E@), the following equations are

obtained:

~~O~~~[AsinKxzn(a, +s)+BcosKx,.(al +s)]

“cos~(y–aq)

= ,~OqslcosK.,l(al +s-a,)cos~(y-a,) (12)

–qz~K~z~[ A cos K.Z.(al +s) –BsinKX2.(al +s)]c~d

=J=3EgJY’)cos~(Y’-a,)@’ (13)
- @

731 Kx31sin %31(a1 +s–a2)~# =Ja3EgxY’)

— a$

“cos$(y’-aq)dy’.

(14)

Substituting for’ql~ and T31 in (9) and (12) from (10) and

(14), respectively, and solving TZ.A and q2nB, from (11)

and (13) we obtain the following coupled equations:

‘Ja3Eg{Y’)cos~(Y’-a4)4’—%
w Fg, – Fg, COS KX2ns

=
2(

n=o CndKx2~Sin KX2nS )
COS~(y–a3)

m cot Kx31(a1 +s–a2) 17
x
I=o +KX31

cos~(y–a4)

.J”3EgJyJ)c0s$(yJ-a4)@’
—4

m Fg,cos Kx2~s– Fg,
. x(~=o c~dKx2~sin KX2~s )

cos.~ (Y –a3)

(15)

(16)

where Fg, and FgZ represent the right-hand sides of (11)

and (13), respectively. For solving these equations ~g. y)

and Eg2(y ) are expanded as

11

~gfy)= X CicOS~(y–a3)
i=o

(17)

and
1~

EgJy)= ~ Dicos~(y–a3). (18)
i=O

These are substituted in (15) and (16) and inner product is

taken with cos q~(y - a3)/d, q = 0,1,2, +. . . Q. on defining

a coefficient Pr~ as

and truncating the m- and l-summations to ~+ 1 and

L+ 1 terms, respectively, (15) and (16) yield the following

matrix equations:

[u,][cj+[v,][D]=o (20)

[i72][c]+[v2][D]=o (21)

where [C] and [D] are column vectors and

[ul],[~l],[uzl,[vzl eachis a (Q+ l)x(Q-t- 1) matrix with
the following elements:

cot Kx2qs
U1qj(KT) = –($ieqd K

x2q

M ti Kxlmal

+ ~ Pim ‘qm ‘~tbK ‘,m (22j
m.o mx

&qic,d
Vlqj(KT) = KX2qSin K.2qs = – Uzqi(KT) (23)

cot Kx.qs
v2qi(K~) ‘dqicqd Kx2q

- i ~,Pq,
cot Kx31(a1+s–a2)

@Kx31

. (24)
IwO

The TE eigenvalues are therefore given by th~ roots of

det [ti]=O where [H] is the following 2(Q+ 1) x2(Q+ 1)

matrix:

[’1[H(KT)]= -;-$’- .
2!2

(25)

In the case of the TM modes one starts from the electric

Hertzian vector and after the integral eigenvalue problem

is formulated, the unknown aperture longitudinal electric

fields are expanded as
1,

Egfy)= X C7Sinf(y–a3)
i-l

12

EJy)= ~ DJsin~(y–a3).
i=]

(26)

(27)

The final matrix equations are similar to (20) and (21) and

distinguishing the TM case by adding a prime, the matrix

elements are given by

U;qi(KT) = – 8qicqdKx2qcot Kx2qs

K
V:qi(KT) =~qi<qd .

x2q

sm Kx2qs
= - U:qi(KT) (29)
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Fig. 2. The eigenvalue spectrum for a typical ridged waveguide with
b/a=O.5, c/a=O.5, d/b= O.125, s/a= O.125,h=h’.

TABLE I
VARIATION OF DoiwrNANT TE EIGENVALUE wrrn NUMBER OF

GAP AND TROUGH FIELD TERMS (RIDGED WAVEGUIDE
PARAmmRS:~/a=O.s; c/a=O.5; d/b=O.5; s/a= O.125;

Q M L K=a (radians)

1 1 1 3.1868
1 5 5 2.9454
1 10 10 2.9361
1 20 20 2.9352
1 30 30 2.9349
5 5 5 2.9861
5 10 5 2.9703

5 10 10 2.9613
5 20 10 2.9596

5 20 20 2.9586
5 30 30 2.9579

10 10 10 2.9684

10 20 10 2.9661
10 20 20 2.9648
10 30 30 2.9618
15 15 15 2.9669
15 20 20 2.9657
15 30 30 2.9630

and

Kqi( ‘T)= 8qieq~Kx2qc0t ‘.x2qS

- jj q,P:,~cot
[=1

where

fCX.l(al +s–az) (30)

III. RESULTS OF NUMERICAL COMPUTATION

The characteristic equation det [H(k~)] = O was solved

iteratively to obtain the eigenvalue spectrum. The itera-

tion scheme uses an incremental scanning initially to

locate a change of sign, determines its nature and, if it is a

zero, applies the standard secant method of iteration to

determine the root. In Table I the convergence of the

normalised eigenvalue k=a of the dominant TE mode with

the number of gap and trough field terms—Q, M, L—is
illustrated. The waveguide parameters are indicated in the

table caption.

In Table II the normalised cutoff wavelengths AC/a of

the dominant TE mode for various parameters, computed

with Q = M= L = 10, are given. Each value is followed by

Jull’s [4] theoretical data for extrapolated zero mesh limit

in round brackets. The third entry in each square is XC/a

of the next higher order TE mode which indicates the

bandwidth characteristics for the particular ridge width

chosen.

TABLE II
COMPUTED &/a OF THE DOMINANT AND TIE FIRST HIGHER

ORDER TE MODES FOR b/a=O.5, s/a= O.125.AND h=h’
(JULL’S DATA FOR THE DoMINm”TE MODE A& GIVEN IN

PARENTEn3sEs)

c/a

d/b 0.125 0.250 0.375 0.500 0.625 0.750

4.516 4.157 3.677 3.088 2.349 1.574
0.125 (4.47) (4.12) (3.72) (3.20) (2,40) (1.58)

1.945 2.364 2.491 2.364 1.945 0.826

3.444 3.227 2.904 2.507 2.039
0.250 (3.481) (3.283) (3.001) (2.629) (2.076) (~:fi)

1.531 1.810 1.897 1.810 1.531 0.885

2.593 2.484 2.316 2.117 1.915 1.776
0.500 (2.620) (2.5208) (2.366) (2.1649) (1 .910) (1 .7792)

1.191 1.342 1.391 1.342 1.191 0.942

2.195 2.145 2.076 2.002 1.935 1.891
0.750 (2.209) (2. 162) (2.095) (2.008) (1.901) (1.893)

1.043 1.105 1.128 1.105 1.043 0.971

In Fig. 2 the first few TE eigenvalues of a ridged

waveguide are indicated. It may be noted that the trough

modes have not been assigned any modal designation.

Unlike the case of a conventional ridged waveguide hav-

ing one trough and one gap region, the trough mode

designation in a waveguide with two double ridges does

not follow a simple scheme, as in this case there are two

different trough regions (I and III). A particular trough

mode field pattern may consist of two different TE mode

patterns in two trough regions leading to ambiguity in

designation. For identifying the nature of field patterns

without actually computing the field strength variations,

the analysis was modified by introducing another symme-

try plane along X-axis corresponding to symmetric ridges

and the eigenvalues were scanned for different combina-

tion of X- and Y-symmetries. These, together with the

approximate calculations based on the rectangular dimen-

sions of the trough regions, give us an idea about the field

patterns.

IV. CONCLUSIONS

The eigenvalue spectrum of rectangular waveguide with

two symmetrically placed double ridges has been de-

termined. The dominant mode results compare very well

with Jull’s [4] data obtained by finite difference technique.

The bandwidth characteristics of the waveguide make it

suitable for the varactor-tuned solid-state oscillators using

waveguide resonators where full-height post mounting of

devices leads to restricted tunability due to frequency
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saturation. The evaluation of this waveguide for such

applications would in turn require determination of the

equivalent circuit of the ridge–gap mounting structure.

That would be the topic of a future communication.
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Asymmetric Realizations for Dual-Mode
Bandpass Filters

RICHARD J. CAMERON AND JOHN DAVID RHODES, SENfOR MEMBER, IEEE

Abstracr-Two analytic synthesis techniques are presented for even-

qmmetric dual-mwle in-ffne prototype networks up to degree 14.
Commencing with the coupffng matrix for the double CroScQ@ed array,
retatfonaf transformations are appfied to transform the matrk fnto the

form requked for the dual-mode in-fine asymmetric structure. 66Asymmet-
I’ie” here means that the eoupffng elements (* screws) are unequal fn

value about the physicaf center of the fffter. ‘Ike necessity for these

~c am _ *n it was discovered that it was impossible to

~ on accountof thefr tmmmksion zero pattern in the cmnplex-
pbme representation of the transfer function. F~ kamw the
fullcoupiin grnatrixfs~-dof~ even-mede rnatrka,qwithtfre

~c ~~o~ * ~tric in-line reafktion proceRs may be
appfied to electrically mymmtric matrf~ such as those for singbended
fflters for multiplexer applications. To demonstrate the vafidity of the

S’Y~Cd model of ~CfI type of reaffzatfon has been constmckd

I. INTRODU~ION

T HE PROBLEM of converting the mathematical de-

scribing polynomials of the characteristics of a low-

pass prototype filter network into a symmetric in-line

dual-mode structure was first addressed by Atia and Wil-

liams [1]. Firstly an even-mode coupling matrix was

synthesized, and then by iteratively rotating this matrix

Marmscript receivedMay 19, 1980; revisedAugust 2S, 1980.
R. J. Cameron is with the European Space Research and Technology

Centre, 2200 AG, Noordwijk, The Netherlands.
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certain prescribed couplings were annihilated. The result-

ing matrix, when unfolded into the full coupling matrix,

contains only those couplings that could be realized by a

symmetric in-line dual mode structure, while retaining the

original 2-port electrical parameters. More recently, the

procedure of annihilating the couplings by iteration and

optimization has been replaced by analytic techniques for

even filter orders 6– 12 inclusive [2]. These analytic tech-

niques use as their base, the folded coupling matrix for the

generalized low-pass cross-coupled network, the synthesis

of which is described in [3]. Using these new procedures,

the full coupling matrices for symmetric in-line dual-mode

filters are easily and quickly generated from the describ-

ing polynomials.

The symmetric realizations ho-wever have restrictions.

Firstly, the methods cannot be used for electrically asym-

metric characteristics, such as those for multiplexer appli-

cations. Secondly, there does not appear to be a solution
for 14th order characteristics, which occasionally do have

application. Thirdly, for lower degree cases, certain char-

acteristics which have particular patterns of transmission

zeros as represented in the Argand diagram are unrealiz-

able with a symmetric structure. A complete set of realiza-

bility conditions is given in [2].

It was these reasons that prompted a study to be made

into solutions other than ~with symmetric structures. In

fact two general types of asymmetric solution were dis-

covered. The first is a general asymmetric solution which
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