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aid of (2.10) and (2.11):

a,—b, a,—b, a%—bg
+ng
a,+b, a,+b, (a,+5,)
r & r3 2
=Bln(r_3){ 2 (f Ep(P/:O)P/ PA(P/)dP/) /:BPA
1 P=] ry

+ i (frsEp(P’,O)PZPE(P,) dPl)Z/BPB}
P=2"""2

/(s

Now considering the case when ¢, =a, =1, and a; =0
and denoting the total transverse electric field, at the
junction, for this case by Ep(p,O) we can obtain the
variational relation (2.15a) with the aid of (2.13a) and
(2.13b). In (2.15a) we recognize that the first term in the
second infinite sum precisely corresponds to {b?/(a,+
b,)*} with a; =0.

Considering the case when a,=(1—S83,)/8;, a,=0,
and a; =1 and denoting the total transverse electric field,
at the junction, for this case by Ep( p,0) we can obtain the
second variational relation (2.15b).

(A1.6)
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Eigenvalue Spectrum of Rectangular
Waveguide with Two Symmetrically
Placed Double Ridges

D. DASGUPTA anp P. K. SAHA

Abstract—The eigenvalue spectrum of rectangular waveguide with two
symmetrically placed double ridges has been determined by formulating an
integral eigenvalue problem and solving by Ritz—Galerkin method. The
bandwidth characteristic is found to be adequate for varactor-tuned solid-
state microwave oscillator applications requiring ridge structure for resona-
tor. There remains some ambiguity in the designation of trough modes.

1. INTRODUCTION

IDGED WAVEGUIDES have many applications in
microwave circuits because of their intrinsic broad
bandwidth [1]-[3]. A rectangular waveguide with two

Manuscript received June 9, 1980; revised August 28, 1980.
The authors are with the Institute of Radiophysics and Electronics, 92,
Acharya Prafulla Chandra Road, Calcutta-700009, India.

symmetrically placed double ridges was proposed and
used by Jull ef al. [4] for microwave heating. The design
data were presented in the form of normalized cutoff
wavelength of the dominant TE mode for various ridge
parameters. These were calculated by the five point finite
difference method and extrapolated to the zero mesh
limit. For the experimental verification measurements were
also carried out on WR 340 waveguide with double ridges.

Among the other possible applications of such wave-
guides one appears to be in oscillators. Wide-band opera-
tion of Gunn oscillators using the conventional ridged
waveguide has been demonstrated [5], [6]. The waveguide
with two symmetrical double ridges may well be useful for
the broad-band varactor-tuned Gunn oscillator with two
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Fig. 1.

Rectangular waveguide with two symmetrically placed double

ridges-transverse plane.

diodes gap mounted in parallel. The calculations show
that for the ridge parameters appropriate for such an
application, this waveguide has a bandwidth of at least an
octave. Whatever the application, one needs to know the
complete eigenvalue spectrum of the waveguide. This has
been evaluated following Montgomery’s [7] work on ridged
waveguide. An integral eigenvalue problem is formulated
and solved numerically by Ritz—Galerkin method. The
results of computation on the dominant as well as a few
higher order modes are presented.

IL.

The geometry of the ridged waveguide is shown in Fig.
1 along with the dimensional notations. The only plane of
symmetry assumed is the Y-Z plane. The problem can
then be divided into four cases of TE and TM modes with
the electric or magnetic wall at the plane of symmetry.
The TE mode analysis is given in detail while for the TM
mode the final matrix equations are given without deriva-
tion. ‘

Using' the notations of Montgomery [7] for conven-
ience, the introductory equations for deriving the TE basis
fields from the Hertzian vector m, are written briefly as
follows:

FORMULATION OF THE PROBLEM

m=g(rr)$(2)/; (1)
where
(Vi +K2)g(r)=0
(82/0z% +v%)¢(2)=0 @
v=\/K02 -K2, ifK,= 2—;’ >KT
=-Wki-KZ, ifK,<Kp. 3)
The TE basis fields are given by
er(ry)=Vg(ry) X1, | 4)
hy(rp)=(v/jeopo)l, X er(rr). ®)

Using the TE boundary conditions we can write the
following expressions for g(ry) in the gap and trough
regions.

A. Region I(0<x<a,)

gi(rp)= 2 "hmsmK xcos - b (y ay) (6)

m=0

where the upper and lower functions correspond, respec-
tively, to the magnetic and electric symmetry and

fm

B. Region II (a, <x<a;+s)

mar\2

K T) =K2.

x

o0
g(rr)= 2 Ny,(Asin K

n=0

2n%

+BcosK2,,x)cos y (y as)

nw
KJ?Z” ( d ) KT (7)
C. Region III (a; +s<x<a,)
o0
In
g(rr)= 2 13,€08 Kx3,(x—a2)cos—b—(y—a4)
1=0
Ir\?
Kx31 (—b—) =K%- ®)

From the condition g, =g, at the aperture at x=aqa, we
obtain

2 Mm in
cos

mw
alcos—l)—-(y—a4)
m=0

xlm

a, +Bcos sz,,al)cos%z(y—%).

®
Let E, (y) be the unknown aperture field at x=a,. Then

from the continuity of e,(r;) at x=a, we obtain the
following equations:

cOos K
—sin

xlm

= 2 n2n(ASIn x2n4

n=0

“Mm xlm[ al]emb=

[ B (y)eos T (' ~a) b’ (10)
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and
—n2nKx2n(A Cos Kx2na1 — Bsin KxZnal')end
a3 14 nW Id ’
= [ E(»eosZ (v -a)d (1)
_aé
where
€, =1, for n=0
=1/2, for n#0.

Proceeding similarly with the boundary conditions at x=
a, +s and denoting the unknown transverse electric field
at the aperture by E,(y), the following equations are
obtained:

[>.¢]

znZn[ASIn x2n(a1+s)+Bcos x2n(a1+s)]
n=0

na

-cos7(y—a3)

[+ o)
= D nycos K, 5, (a; +s— az)cos ()’ a,) (12)
1=0

~02,K 5[ Acos K ,,(a, +s)— Bsin K,2.(a,+s)]e,d
(y —az)dy’ (13)

-r

. a
N3, K 3,510 x31(01+s"‘72)‘1b=f /Egz()’,)

E (¥ )cos

cos—(y —a,)dy’.
(14)

Substituting for 7,,, and 75, in (9) and (12) from (10) and
(14), respectively, and solving 7,,4 and 7,,, from (11)
and (13) we obtain the following coupled equations:

tan lemal

~—cot

€,.bK .. ¢

-3

mm
os—b-—(y—a4)
m=0

f ,Eg,(y')cos—b.f(y'—a.,)dy'
—u

® (F —F cosK,_, s
82 41 x2n b
B 2y~ 15
n O(Gndeaninszns) 08 d (y a3) ( )
o oot K, 3(a, +s— az)
1§0 EIbe —(y a4)

a 1
J Eely)eos g (v =a) &

F,,cosK,,,s—F,

nw
2 (e dK,,sinK,, s )cogF(y—a3) (16)

where F, and F, represent the right-hand sides of (11)
and (13), respectlvely For solving these equations E, )
and E_(y) are expanded as

Ey(0)= 3. Goosi (y—as) )
i=0
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and

12 .

I
E,(y)= X Dicos~7 (y—as). (18)
i=0

These are substituted in (15) and (16) and inner product is
taken with cos gm(y —a5)/d, 4=0,1,2,«+., Q. On defining
a coefficient P, as

a  rq ST,
prs-—f_aécos"i(y—a:,)cosT(y—af)aﬁ) \(19)

and truncating the m- and /-summations to M+1 and
L+1 terms, respectively, (15) and (16) yield the following
matrix equations; :

[ullcl+[v]lp]=0 (20)
[G][C]+[W:][P]=0 @1

where [C] and [D] are column vectors and
[U1IVLIG,),[V,] each is a (Q+ 1) X(Q+ 1) matrix with
the following elements:
cot K, s

Kx2q

tan
lem
—cot

€mbI('xklm

Ulqi(KT) = —8qi€qd

(22)

Im qm

IIME

8 d

qx 9
sin K,
cotK,,, s

Kx2q

L

cotK, 4, (a, +s—a2)
_ 2 P.P x3!

=0 e €,bK ,
The TE eigenvalues are therefore given by the roots of
det[ H]=0 where [H] is the following 2(Q+ 1)><2(Q+ 1)
matrix:

qui(KT)= K (23)

x2q

s == []2qi(KT)

I/2qi(I{T) =8qi€qd

24

(25)

In the case of the TM modes one starts from the electric
Hertzian vector and after the integral eigenvalue problem
is formulated, the unknown aperture longitudinal electric
fields are expanded as

E,(y)= ZIC’sm——(y as) (26)
E,(»)= ZD'sm 7 (r—as). (27)

i==]
The final matrix equations are similar to (20) and (21) and
distinguishing the TM case by adding a prime, the matrix
elements are given by

1i(Kp)= ——Sq,-equxzqcot K, 2.5
K
- 2 I,l,qu,m xll;” '_tanlemal (28)
m=1 €, cot
Kx2q
lqt(KT) 8 i€ d K. 2qt(KT) (29)

x2q
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Fig. 2. The ecigenvalue spectrum for a typical ridged waveguide with
b/a=0.5,c¢/a=05,d/b=0.125,5/a=0.125, h=h'.

TABLE I
VARIATION OF DOMINANT TE EIGENVALUE WITH NUMBER OF
Gapr aND TrROUGH FIELD TERMS (RIDGED WAVEGUIDE
ParaMETERS: b/a=0.5; c/a=0.5; d/b=0.5; s/a=0.125;

Q M L K ra (radians)
1 1 1 3.1868
1 5 5 2.9454
1 10 10 2.9361
1 20 20 2.9352
1 30 30 2.9349
5 5 5 2.9861
5 10 5 2.9703
5 10 10 2.9613
5 20 10 2.9596
5 20 20 2.9586
5 30 30 2.9579

10 10 10 2.9684

10 20 i0 2.9661

10 20 20 2.9648

10 30 30 2.9618

15 15 15 2.9669

15 20 20 2.9657

15 30 30 2.9630

TABLE 11
CoMPUTED A, /a OF THE DOMINANT AND THE FIRST HIGHER
OrDER TE MODESs FOR b/a=0.5, s/a=0.125, AND h=h'
(JuLL’s DATA FOR THE DOMINANT TE MODE ARE GIVEN IN

PARENTHESES)
c/a
d/b 0.125 0.250 0.375 0.500 0.625 0.750
4,516 4.157 3.677 3.088 2.349 1.574
0.125 | (4.47) 4.12) 3.72) 3.20) (2.40) (1.58)
1.945 2.364 2.491 2.364 1.945 0.826
3.444 3.227 2.904 2.507 2.039 1.646
0.250 | (3.481) (3.283) (3.001) (2.629) (2.076) (1.649)
1.531 1.810 1.897 1.810 1.531 0.885
2.593 2.484 2.316 2.117 1.915 1.776
0.500 | (2.620) (2.5208) (2.366) (2.1649) (1.910) (1.7792)
1.191 1.342 1.391 1.342 1.191 0.942
2,195 2.145 2.076 2.002 1.935 1.891
0.750 | (2.209) (2.162) (2.095) (2.008) (1.901) (1.893)
1.043 1.105 1.128 1.105 1.043 0.971

and
2,qi( KT) = SqieququCOt Kx2qs

L
K
-2 P ol 22 cot K 3/(ay +s—a,)  (30)
I=1 b
where
as rmw ST
P, = sin—(y—a;)sin—(y—a . 31
[ sinTGr=a)sing (r=a)d. (D
III. REesurLts OF NUMERICAL COMPUTATION

The characteristic equation det[ H(k;)]=0 was solved
iteratively to obtain the eigenvalue spectrum. The itera-
tion scheme uses an incremental scanning initially to
locate a change of sign, determines its nature and, if itis a
zero, applies the standard secant method of iteration to
determine the root. In Table 1 the convergence of the
normalised eigenvalue k,a of the dominant TE mode with
the number of gap and trough field terms—Q, M, L—is
illustrated. The waveguide parameters are indicated in the
table caption.

In Table 1I the normalised cutoff wavelengths A_/a of
the dominant TE mode for various parameters, computed
with Q=M= L=10, are given. Each value is followed by
Jull’s [4] theoretical data for extrapolated zero mesh limit
in round brackets. The third entry in each square is A, /a
of the next higher order TE mode which indicates the
bandwidth characteristics for the particular ridge width
chosen.

In Fig. 2 the first few TE eigenvalues of a ridged
waveguide are indicated. It may be noted that the trough
modes have not been assigned any modal designation.
Unlike the case of a conventional ridged waveguide hav-
ing one trough and one gap region, the trough mode
designation in a waveguide with two double ridges does
not follow a simple scheme, as in this case there are two
different trough regions (I and III). A particular trough
mode field pattern may consist of two different TE mode
patterns in two trough regions leading to ambiguity in
designation. For identifying the nature of field patterns
without actually computing the field strength variations,
the analysis was modified by introducing another symme-
try plane along X-axis corresponding to symmetric ridges
and the eigenvalues were scanned for different combina-
tion of X- and Y-symmetries. These, together with the
approximate calculations based on the rectangular dimen-
sions of the trough regions, give us an idea about the field
patterns.

IV. CoNcCLUSIONS

The eigenvalue spectrum of rectangular waveguide with
two symmetrically placed double ridges has been de-
termined. The dominant mode results compare very well
with Jull’s [4] data obtained by finite difference technique.
The bandwidth characteristics of the waveguide make it
suitable for the varactor-tuned solid-state oscillators using
waveguide resonators where full-height post mounting of
devices leads to restricted tunability due to frequency
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saturation. The evaluation of this waveguide for such
applications would in turn require determination of the
equivalent circuit of the ridge—gap mounting structure.
That would be the topic of a future communication.
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Asymmetric Realizations for Dual-Mode
Bandpass Filters

RICHARD J. CAMERON anp JOHN DAVID RHODES, SENIOR MEMBER, IEEE

Abstract—Two analytic synthesis techniques are presented for even-
degree asymmetric dual-mode in-line prototype networks up to degree 14.
Commencing with the coupling matrix for the double cross-coupled array,
rotational transformations are applied to transform the matrix into the
form required for the dual-mode in-line asymmetric structure. “Asymmet-
ric” here means that the coupling elements (irises, screws) are unequal in
value about the physical center of the filter. The necessity for these
asymmetric solutions arose when it was discovered that it was impossible to
realize certain useful transmission characteristics with the symmetric in-line
structure, on account of their transmission zero pattern in the complex-
plane representation of the transfer function. Furthermore, because the
full coupling matrix is used instead of the even-mode matrix as with the
symmetric solution, the asymmetric in-line realization process may be
applied to electrically asymmetric matrices, such as those for single-ended
filters for mulitiplexer applications. To demonstrate the validity of the
theory, a practical model of each type of realization has been constructed
and measured.

I. INTRODUCTION

HE PROBLEM of converting the mathematical de-
scribing polynomials of the characteristics of a low-
pass prototype filter network into a symmetric in-line
dual-mode structure was first addressed by Atia and Wil-
liams [1]. Firstly an even-mode coupling matrix was
synthesized, and then by iteratively rotating this matrix
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certain prescribed couplings were annihilated. The result-
ing matrix, when unfolded into the full coupling matrix,
contains only those couplings that could be realized by a
symmetric in-line dual mode structure, while retaining the
original 2-port electrical parameters. More recently, the
procedure of annihilating the couplings by iteration and
optimization has been replaced by analytic techniques for
even filter orders 6—12 inclusive [2]. These analytic tech-
niques use as their base, the folded coupling matrix for the
generalized low-pass cross-coupled network, the synthesis
of which is described in [3]. Using these new procedures,
the full coupling matrices for symmetric in-line dual-mode
filters are easily and quickly generated from the describ-
ing polynomials. )

The symmetric realizations however have restrictions.
Firstly, the methods cannot be used for electrically asym-
metric characteristics, such as those for multiplexer appli-
cations. Secondly, there does not appear to be a solution
for 14th order characteristics, which occasionally do have
application. Thirdly, for lower degree cases, certain char-
acteristics which have particular patterns of transmission
zeros as represented in the Argand diagram are unrealiz-
able with a symmetric structure. A complete set of realiza-
bility conditions is given in [2].

It was these reasons that prompted a study to be made
into solutions other than- with symmetric structures. In
fact two general types of asymmetric solution were dis-
covered. The first is a general asymmetric solution which
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